

















## BEIJING: O3 Concentration in 1997-1999 Ozone concentration in Beijing

### O<sub>3</sub> Concentration in Beijing Max. Hourly Number of non-Number of nonconcentration attainment davs attainment hours $(\mu g/m^3)$ 1997 71 434 346 1998 101 504 384 119 777 1999





| _    |        | Chin                     | а: l        |                                         | n N(<br>on in Ch | OX P                                     | rob        | lems                               |
|------|--------|--------------------------|-------------|-----------------------------------------|------------------|------------------------------------------|------------|------------------------------------|
|      | No.    | Non-attainment<br>cities |             | Non-attainment for<br>Class II standard |                  | Non-attainment for<br>Class III standard |            | Non-attainment                     |
| year | cities | number                   | rate<br>(%) | number                                  | rate<br>(%)      | number                                   | number (%) | III                                |
| 1995 | 88     | 32                       | 36.4        | 3                                       | 3.4              | 0                                        | 0          |                                    |
| 1996 | 88     | 27                       | 30.7        | 25                                      | 28.4             | 2                                        | 2.3        | Beijing,<br>Guangzhou              |
| 1997 | 94     | 32                       | 34.1        | 29                                      | 30.9             | 3                                        | 3.2        | Beijing,<br>Guangzhou,<br>Shanghai |
| 1998 | 96     | 32                       | 33.3        | 29                                      | 30.2             | 3                                        | 3.1        | Beijing,<br>Guangzhou,<br>Shanghai |



# Motor Vehicle Pollution in Urban <u>Areas</u> Motor vehicles contribute nearly 50% of NOx emissions in metropolitan cities About 1/3 of Major Cities Exceed ambient NOx NAAQS; CO concentration generally higher than national standard in traffic areas; Photochemical pollution emerging in big cities; Vehicles becoming a main source of air pollution in urban areas.



















### **Efforts in China To Address Urban Air Pollution**

Initial Clean Air Strategy Developed

- ► Complete Lead Phase Out by 2000
- European Emissions Standards Introduced For Cars & Trucks
- Individual Cities Supplementing National Actions
- ► I/M Pilot Being Developed in Shanghai
- ► Alternative Fuels For Buses & Taxis
- Catalyst Retrofits in Beijing

### **Control Measures on Motor** Vehicle Pollution

### **Emission Standards For New Vehicles**

| Time<br>Category | Before<br>2000 | 2000   | 2001   | 2002 | 2003 | 2004    | 2005    |
|------------------|----------------|--------|--------|------|------|---------|---------|
| PC               | ECE 1503       | EURO I | 4      | 4    | +    | EURO II | +       |
| LDV&LDT          | ECE 1503       | ţ      | EURO I | +    | 4    | +       | EURO II |
| HDDV             | None           | Ļ      | EURO I | 4    | +    | EURO II | +       |
| Motorcycle       | ECER40         | t      | EURO I | 4    | ÷    | +       | EURO II |

Beijing, Shanghai Introduced Euro 2 in 2003

|                             |              | <u>ty</u>        |  |  |
|-----------------------------|--------------|------------------|--|--|
| Specifications              | for Gasoli   | ne               |  |  |
| ITEM                        | LIMITS       |                  |  |  |
| Code of Standards           | GB 484-1993  | GB 17930-1999 1) |  |  |
| Lead (g/L, max.)            | 0.35, (0.45) | 0.005            |  |  |
| Sulphur (% Mass, max.)      | 0.15         | 0.08             |  |  |
| Manganese (g/L, max.)       |              | 0.018            |  |  |
| Phosphorus (g/L, max.)      |              | 0.0013           |  |  |
| RON, Min.                   | 90, 93, 97   | 90               |  |  |
| (RON+MON)/2, Min.           | 85, 89, 92   | 85               |  |  |
| Aromatics HC (vol. %, max.) |              | 40               |  |  |
| Olefins (vol. %, max)       |              | 35               |  |  |
| Benzene (vol.%, max)        |              | 2.5              |  |  |
| Vapour pressure             |              |                  |  |  |
| Wnter(Sep Feb.), kPa max.   | 88           | 88               |  |  |
| Summer(Mar Aug.), kPa max.  | 74           | 74               |  |  |
| Oxygen (wt. %, max.)        |              | 2.7              |  |  |

### **Overview of Fuel Quality**

### Specifications for Light Diesel in China

| ITEM                                                   | LIMITS 1)      |                           |  |  |  |
|--------------------------------------------------------|----------------|---------------------------|--|--|--|
| Code of Standard                                       | GB 252-94      | GB 252-2000 <sup>2)</sup> |  |  |  |
| Cetane Number, min                                     | 45 (40)        | 45                        |  |  |  |
| Sulfur, %(m/m), max                                    | 0.2 (0.5, 1.0) | 0.2                       |  |  |  |
| Flash point PM, °C, min                                | 65 (45)        | 55 (45)                   |  |  |  |
| Ash, wt%, max                                          | 0.01 (0.02)    | 0.01 (0.02)               |  |  |  |
| Acidity, mg/KOH/100ml, max                             | 5 (10)         | 5 (10)                    |  |  |  |
| Oxidation stability, mg/100ml, max.                    | 2.0            | 2.5                       |  |  |  |
| Density@20°C, kg/m3                                    |                |                           |  |  |  |
| CCR 10%, wt %, max                                     | 0.3            | 0.3                       |  |  |  |
| Note: 1) Limits in ( ) are for basic qualified diesel; |                |                           |  |  |  |
| 2) GB 252-2000 went into effect on Jan. 1, 2002.       |                |                           |  |  |  |





- 10<sup>th</sup> 5-Year Plan
  - Hybrid Vehicles Ready For Production
  - Prototype Fuel Cell Vehicle
  - Parity With EU Emissions Standards by 2010
- Beijing "Green" Olympics
- Shanghai World Expo
- SETC Developing Fuel Economy Program

## Advanced Technologies Could Help Address These Problems

- Substantially Reduce Conventional Urban Pollutants
- Reduce Oil Consumption Through High Efficiency
- Major Challenges:
  - Cost
  - Vehicle Availability





## Conclusions

- High Vehicle Growth Is Leading To Rapid Increases in Vehicle Emissions
- Air Quality Already Degrading
- Initial Pollution Control Effort Reflects A Good Start
  - Unleaded Gasoline
  - Euro 1/Euro 2 Standards For New Vehicles
  - In Use Vehicle Controls

# Conclusions (2)

- Most Vehicle Pollutants Will Continue To Go Up Without Additional Controls
- Goal Should Be State of the Art Controls by About 2010
- Much Cleaner Fuels Will Be Required
- Fuel Consumption/CO2 Must Also Be Addressed
- Hybrids Could Help Substantially in Short Term
- Fuel Cells Could Play Important Long Term Role if Challenges Can Be Overcome